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Abstract. A new empirical magnetic field model has been developed, representing the variable

configuration of the inner and near magnetosphere for different interplanetary conditions and the ground

disturbance levels. This paper describes the mathematical structure of the model, while the results of fitting it to

a new set of spacecraft data are presented in a companion paper. The general approach remains the same as in the

earlier T96 model, but the mathematical description of all major sources of the magnetospheric field now applies

recently developed new methods. In particular, the field deformation technique is extensively used, making it

possible to realistically and flexibly represent the fields of the cross-tail current, the ring current, and the Region 1

and 2 Birkeland currents. The new model ring current includes not only the axisymmetric component, but also

a partial ring current with field-aligned closure currents, a feature absent in earlier data-based models. The field

of the cross-tail current includes two modules whose current densities vary along the Sun-Earth line with different

rates. The cross-tail current sheet warps in two dimensions in response to the geodipole tilt, its inner edge shifts

along the Sun-Earth line with growing disturbance, and its thickness varies along and across the tail. Birkeland

currents of Regions 1 and 2 vary in response to interplanetary conditions, so that at ionospheric altitudes they

shift in latitude and change their distribution in local time. The magnetospheric boundary is specified using

a most recent empirical model [Shue et al., 1998]; its size is controlled by the solar wind ram pressure and its

shape also varies in response to changes of the Earth’s dipole tilt angle. The model magnetopause ensures a full

confinement of the fields of all sources inside the magnetopause, regardless of its shape and size. The model also

includes an IMF-controlled interconnection field, allowing a finite normal � � at the magnetopause and hence

open magnetospheric configurations.
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1. Introduction

The data-based approach to the modeling of the geomagnetosphere has been developed over the last three

decades, starting with the pioneering work by Mead and Fairfield [1975]. Subsequent efforts [Tsyganenko

and Usmanov, 1982; Tsyganenko, 1987, 1989] resulted in more refined models, useful in many studies. The

principal goal of data-based magnetosphere modeling is to extract full information from large sets of available

data, bridge the gap between theory and observations, and help answer a fundamental question ”What is the

actual structure of the geospace magnetic field and how is it related to changing interplanetary conditions and the

ground disturbance level ?”

The recent rapid growth in the use of data-based models and the ever-growing demand for more flexible and

more accurate ones was matched by substantial progress in their development. A new T96 model [Tsyganenko,

1995, 1996] was developed with continuous dependence on the solar wind pressure, interplanetary magnetic field

(IMF), and Dst-index, replacing earlier binning into several Kp-index intervals. Another important improvement

in that model was the introduction of an explicitly defined magnetopause, with realistic shape and with its size

controlled by the solar wind, in contrast with earlier models which did not specify the boundary explicitly, but

used an uncontrolled ”de-facto” magnetopause. In addition, the interconnection of the geomagnetic field with the

IMF across the magnetopause was included in the model, producing open magnetospheric configurations. The

model also included for the first time the magnetic field of the region 1 and 2 Birkeland currents, by using the

approach of Tsyganenko and Stern [1996].

However, all these improvements notwithstanding, the T96 model still contained serious shortcomings.

In particular, because of an oversimplified approximation for the ring current, the model field in the inner

magnetosphere was found generally overstretched [Tsyganenko, 2001; Ganushkina et al., 2001], especially

during strongly disturbed conditions. Another long-standing deficiency of the data-based models was their

inability to replicate the strong dawn-dusk asymmetry of the inner magnetosphere during stormy periods.

The purpose of this work is to present a new model, based on a completely revised mathematical framework,

a new set of spacecraft data, and an improved method of parameterizing the external field sources by the solar

wind state variables. In this article, a detailed description is given of the elements of the new model, while
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its fitting to space magnetometer data is presented in the companion paper [Tsyganenko, 2001], herein called

Paper 2.

2. Overview of the Model’s Structure

The magnetic field within the modeling region is represented in modular fashion, regarding the external

part of the total field �� (that is, without the Earth’s main field) as the sum of contributions from major

magnetospheric magnetic field sources

�� � ��� ���� ��� ����� ����� � ���

where ��� is the field of the Chapman-Ferraro currents which confine the Earth’s main field inside the model

boundary. The next three terms, ���, ��, and ����, are the contributions of the ring current, cross-tail current

sheet, and large-scale field-aligned currents, respectively. Each of these terms includes a corresponding shielding

field, to ensure a full confinement of the total magnetic field inside the model magnetopause. The last term in

(1), ����, represents a partial penetration of the IMF inside the model magnetosphere. That term is a potential

magnetic field, fully defined by a distribution of its normal component on the model boundary, which is found to

depend on the strength and orientation of the IMF. It should be stressed that while the mathematical framework is

made to fit the observed current patterns, all its parameters are derived from observations.

In general, the above structure of the external field is similar to the one assumed in the T96 model. However,

here individual terms in (1) are given by largely different mathematical forms. In particular, the ring current and

Birkeland current field models have been replaced by more realistic and flexible approximations, as described

below.

2.1. Model Ring Current

One of the main goals of this effort was to improve the modeling of the inner magnetic field. To that

end, a new model was devised for the ring current, a principal source of the observed external � in the region

� � ��� . Instead of simple empirical ring currents, used in the T96 and earlier works [Tsyganenko and

Usmanov, 1982; Tsyganenko, 1987, 1989], a more sophisticated and accurate approximation has been used here,
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based on the electric current calculated from an observed distribution of the particle pressure and anisotropy. It

also takes into account the strong dawn-dusk asymmetry of the ring current during disturbed times, a feature

neglected in all previous data-based models. A detailed description of the asymmetric model ring current is given

elsewhere [Tsyganenko, 2000], and readers are referred to it for specific details of derivation and structure.

Here we concentrate on further modifications, aimed at replicating basic effects of magnetic storms. The

original model consisted of two modules: the first module represented the axially symmetric part of the ring

current (SRC), and the second one represented the partial ring current (PRC), including field-aligned currents

associated with the local time asymmetry of the azimuthal current. In the original model the SRC was based on

quiet-time profiles of the pressure and anisotropy, obtained earlier by Lui and Hamilton [1992], and in principle,

the same method could have been used for the modeling of the storm-time field in the inner magnetosphere.

However, lack of data on the global storm-time particle distribution, its variability, and complexity made it hard

to devise a reasonably simple and flexible model.

For that reason, the approach pursued here is a compromise. In essence, it singles out and reproduces only

the following most important storm-time effects: (1) An increase of the total magnitude of the ring current, which

roughly tracks the variation of the corrected Dst-index. (2) The penetration of energetic particles deep into the

inner magnetosphere, convincingly demonstrated by numerical simulations [e.g., Fok et al., 1996, 1999; Kozyra

et al., 1998], and requiring a variable characteristic size of the model ring current (the T96 model ring current had

a fixed radius). (3) A dramatic build-up of the asymmetric PRC, resulting in much larger plasma pressure and

more depressed magnetic field in the evening sector [e.g., Liemohn et al., 2001], and hence, strong field-aligned

currents, diverting the excess of the azimuthal current from the dusk side.

The above effects can be reproduced by a relatively simple modification of the original ring current

model. The overall magnitudes of the SRC and PRC can be gauged by the corrected Dst-index (or by its

predicted value) and their spatial dimensions can be uniformly scaled by introducing factors �
�

and �
�

, so

that, ��
���

��� � �
���

����
�
�, ��

���
��� � �

���
����

�
�. In addition, to model a development of the duskside

depression at the main phase of a storm, the PRC can be rotated toward the dusk side by an angle Æ, depending

on the storm’s intensity and phase. More details on the model parameterization are given in Paper 2.
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The fields of the symmetrical and partial components of the ring current must also be kept confined within

the model magnetopause, for any values of the solar wind pressure, dipole tilt angle, the scaling factors, and the

rotation angle. That question will be addressed in detail in section 2.4.2.2.

2.2. Modeling the Field of the Cross-Tail Current

The magnetotail field model is based on principles and methods, developed in our earlier works [Tsyganenko

and Peredo, 1994; Tsyganenko, 1995, 1998]. The model tail field consists of independent ”modules”, that is,

fields produced by current sheets with different rates of outward decrease of the current density, and the share of

each ”partial” field is adjusted to fit the data best. Each module is provided with its own shielding field (similar

to ���) so that the total tail field always remains confined within the magnetopause. More discussion of the tail

shielding field is given in section 2.4.2.1.

2.2.1. Initial model (no dipole tilt). The field of the cross-tail current sheet is given by the vector

potential � � ���� with

�� � �

��
��	

��
	�
�
�� 	
�



�	�
� 


�
�
�

� ���

where ��� �� �� form a cylindrical coordinate system, co-axial with the �
�� axis. The quantities 	�, 

�	�
� , and



�
�
� are defined as

	� �
�
�



�	�
� � 


�
�
�

(3)



�	�
� �

�
��� 
��
 � �� � ���
 (4)



�
�
� �

�
��� 
��
 � �� � ���
 (5)

where � �
�
�
 ��
. Equations (2)–(5) yield a magnetic field of an equatorial current disk with a finite

thickness scale ��. The parameters ��, 
�, and �� were found by fitting the electric currents obtained as

��� � ��������� to the desired profiles of the current density, which have a steep inner edge and different

tailward decrease rates at the outer slope of the profile. Note that the vector potential defined by (2)–(5) is slightly

different from that of Tsyganenko and Peredo [1994] (cf. their Eq.(11)), used in T96 model. In that work, for the

sake of simplicity, we chose 
� � �� � ��, while here the parameters 
� and �� can be varied independently. That



7

made it possible to reduce the number of terms in (2) to N=5. We also note a misprint in equations (21)–(22) of

Tsyganenko [1995], where the parameters � � should actually read 
�.

To take into account the spatial variation of the current sheet thickness, it suffices to make the parameter �

a function of � and � (before taking the curl of �). It was assumed as

� � �� ����

�
�

��

�

���� �	


�
�

��

�
� ���

providing a sunward and dawn/duskward flaring of the current sheet, controlled by the parameters �� �, �� ,

and ��� (�� enters as a factor by ��� and hence can be kept fixed). The sunward flaring, given by the last

term in (6), affects only the dayside part of the current disk, located outside the magnetosphere, and has virtually

no effect on the tail field. The only purpose of that term is to reduce the gradient of the unshielded field of the

current disk in the subsolar region and thus avoid excessively long expansions for the tail shielding field, as

discussed in detail in section 2.4.2.1.

Partial tail field terms with different scale lengths of the tailward decrease of the current density can

be generated from the basic form (2)–(5) by simple transformations of coordinates. These transformations

combine a uniform shift of the entire current system along the � axis (keeping unchanged the position of the

inner edge of the current sheet) with suitable scaling, that is, replacing the original coordinates ����� �� with

��� � �� � ����� ��� ���, where �� is the position of the peak of the electric current density and � is the

scaling factor. To keep the value of the sheet thickness independent of that scaling factor, it is also necessary to

replace � by ��. In addition, one can introduce a variable shift � � of the current sheet along the Sun-Earth line,

as another free parameter of the model.

Table 1 contains the values of the parameters � �, 
�, and ��, and Figure 1 shows two profiles of the electric

current density along the Sun-Earth line for two tail field modules with different rates of the tailward fall-off of

��. The plots correspond to the following values of the parameters: � � ���, �� � ���, and �� � � for the

”short” module, and � � ���
, �� � ���, and �� � � for the ”long” one. These two modules are among the

building blocks of the model, described here and in Paper 2.

2.2.2. Including the tilt-related deformation. The next step is to incorporate dipole tilt effects in the tail

field model. Here this is done by applying the deformation method [Stern, 1987; Tsyganenko, 1998, hereinafter
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referred to as T98] to the untilted configuration, an approach combining a great flexibility with simplicity and

clarity. It is important to note that the deformation is applied to the total field of the tail current, including its

shielding field. As shown in detail in T98, the dipole tilt effect on the shape of the tail current sheet can be

introduced as a superposition of two deformations.

The first deformation modifies the angular coordinate � � ������ ��
����
���, which results in

a warping of the current sheet in the Y-Z plane. Owing to the axial symmetry of the original (undeformed)

magnetopause, its shape is not affected by the deformation and the total tail field remains fully shielded within

the boundary. A detailed description of the procedure has been given elsewhere [T98, Eq.13-14]; for the sake of

completeness and to avoid possible confusion about the notation of variables, it is reproduced in Eqs. (7)–(10)

below.

The original angular coordinate � is replaced by

� � ���
�� ����

�� � ��
���� � ���

where � is the dipole tilt angle, � �
�
� 
 � �
, the parameter � defines the warping amplitude, and � is a scale

size, quantifying the spatial extent of the warping across the tail and, hence, the curvature of the warped current

sheet in the Y-Z cross-section. In general, both � and � vary with the tailward distance; a data-based quantitative

study of that effect was made in our earlier work [Tsyganenko et al. 1998; Table 1]. In principle, we could use

the results of that work for specifying � and � as functions of �
��; however, since the present model covers

only a limited part of the near tail, in this work � and � were considered as constant parameters, and their values

were found by fitting of the model to data by least squares, as described in detail in Paper 2.

Having thus defined the modified angle � , we have the deformed Cartesian coordinates as

� � � � ����

�� � � ����

and calculate the Cartesian components of undeformed field at the deformed location as � �
�������� �� ���,
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��
�������� �� ���, and ��

	��	���� �� ���, from which we have the cylindrical components

��

 � ��

� ���� ���
	 ����

��
� � ���

� ���� ���
	 ����

���

Next, we derive the cylindrical components of the deformed field [T98, eq. 13] as

��

 � ��




��

��

��
� � ��

� � �
�
��
�

��

��
���




��

��

�
���

��
� � ��

�

��

��
�

and finally convert � �

 and ��

� to ��
� and ��

	:

��
� � ��


 �������
� ����

��
	 � ��


 �������
� ����

����

The second deformation is a radially-dependent rotation around the Y axis, which causes the tail current

sheet to bend in the X-Z plane, so that it tilts with the dipole in the inner/near magnetosphere and shifts in the

north-south direction in the distant tail. Unlike the first one, this deformation affects the shape of the model

magnetopause. Namely, as discussed in more detail in T98, it results in a north-south displacement of the tailward

part of the magnetopause, so that it shifts towards positive (negative) �
�� for � � � (� � �), in agreement

with direct magnetopause observations.

The deformation is applied to Cartesian GSM coordinates, so that a point ����� �� is rotated around the

Y-axis by an angle ��� �, gradually decreasing with growing radial distance  , and maps to a new position

���� � �� ���, so that
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�� � � ������ � � � ������ �

� � � � ����

�� � � ������ � � � ������ � �

The rotation angle ��� � is given by

����� �
�� ����

���
� �  ��	
�

����

This yields �� � � near Earth, while at large distances ����� � ���� ���� �. As shown in T98, the hinging

distance �� itself can be assumed to be a function of position, replicating the observed weaker response of the

magnetopause position to the dipole tilt angle, than that of the cross-tail current sheet. In this model, we assumed

�� � ��� ���

�


 

����

where ��� � ���
�� was found from least-squares fitting (see Paper 2), and ��
 � �
���� was specified to

provide the observed amplitude of the tilt-related shift of the magnetotail boundary at � � ���� �, as obtained

in T98.

The final equations for the components of the deformed field read as follows:

��
� � ��

�

���

��
���

�

�
���
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���

��
� ���

��

���

��

�
���

	

���

��

��
� � ��

�

�
���

��

���

��
� ���

��

���

��

�
����

��
	 � ���
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Here the starred field components are defined by �� � ����� � �� ���, the deformed coordinates �� �� � �� ���

are given by (11), and their partial derivatives are calculated taking into account the radial variation of � � from

(12) and �� from (13).

2.3. Modeling the Field of the Birkeland Currents

Data-based modeling of the magnetic fields from the Region 1 and 2 Birkeland currents on a global scale has

been a stubbornly difficult problem for many years, in part because of their complex geometry and also because
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of the lack of information on their sources and closure path in the distant magnetosphere. Tsyganenko and Stern

[1996] devised an empirical approximation, based on a statistical pattern of field-aligned currents at low altitudes

and its mapping to the distant magnetosphere along geomagnetic field lines in an average model magnetosphere.

A serious deficiency of that model was its insufficient flexibility; in particular, it did not allow one to vary the

azimuthal distribution of the currents and the size of the Region 1/2 ovals, so that the only variable parameter

was the total magnitude of the current. Another drawback was the somewhat cumbersome way of representing

the field, requiring three separate approximations: in the low-latitude region, inside the Birkeland current sheet,

and in the high-latitude magnetosphere.

In this work a new model has been developed, removing the above limitations. In brief, the overall

calculation scheme was as follows. The first step was to numerically calculate ”partial” global field distributions

generated by Birkeland currents (either Region 1 or 2), flowing on an axially symmetric surface and with their

local time variation of the current density expanded in Fourier harmonics, that is, as sines and/or cosines of

multiples of the solar-magnetic longitude.

The next step was to find suitable analytical approximations for those partial fields, so that the total field

could be represented as their linear combination, allowing one to derive the local time variation of Birkeland

currents by fitting the model to data. Such approximations were obtained, using simple analytical model fields

of a conical current sheet with a finite width, developed in our earlier work [Tsyganenko, 1991]. To make the

behavior of the model field agree with the numerically computed one, the conical harmonics were modified by a

suitable deformation, whose parameters yielded a best fit of the deformed field to the numerical results.

The above calculations, however, provided the field produced only by the northern part of the field-aligned

current system. Assuming that (for zero tilt angle of the geodipole) the southern currents are symmetric to the

northern ones, their magnetic field can be easily obtained as a mirror reflection of the field from the northern

currents by appropriately changing signs of the coordinates and of the field components.

After that, two more deformations were applied to the net field of the northern and southern Birkeland

currents, to introduce the observed noon-midnight asymmetry of the Birkeland currents and to take into account

the effect of the dipole tilt angle upon their geometry. Then, a uniform scaling was introduced, to replicate the
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observed expansions and contractions of the Region 1 and 2 ovals. Finally, a shielding field was derived, in order

to confine the model field within the magnetopause. A detailed description of the calculations at each step is

given below.

2.3.1. Numerical calculation of the axisymmetric Birkeland current field. Our intent in choosing

an axially symmetric shape of the Birkeland current sheet as a starting approximation was to reduce the 3D

problem to a 2D one. This greatly simplifies the calculation, thanks to an important general property of such

electric current systems. Namely, as shown earlier [Tsyganenko, 1993; Appendix B], if a current flows on

an axisymmetric surface and its components vary with the azimuthal angle as ���!� and ���!�, then the

expansions of the components of its magnetic field contain only Fourier terms of the same !th order. Therefore,

the magnetic field in all of space can be readily obtained by calculating contributions from individual harmonics

in only one meridional plane, since their local time variation is known to follow either ���!� or ���!�.

The initial configuration of the Birkeland current sheets was defined as following an axially symmetric

surface

�� � � ������

�
� �

 �
 � � ����
�"� � �

	 �

��



� � ��
�

where  and � are geocentric radial distance and solar-magnetic colatitude. The surface (15) intersects the

Earth’s surface along a circle � � "�, corresponding to the observed average position of the current system it

describes (either Region 1 or 2). At low altitudes, the current sheet approximately follows a dipolar field line

shell with � � �����
"�. At larger distances, its shape reflects the distortion of the outer magnetospheric field,

stretched tailward on the nightside. The current flow lines start at low altitudes as field-aligned, but are not

necessarily field-aligned at greater distances.

The power index # defines the location of the transition region between the dipole-like and tail-like shape

of the meridional cross-sections of the surface (15). Based on their comparison with empirical model field

lines, whose footpoints map onto the low-altitude zones of Birkeland currents, we chose # � � and # � ��

for approximating the Region 1 and 2 current sheets, and the corresponding values of the ground colatitude " �

were assumed equal to �
Æ and ��Æ, respectively. Figure 2 displays two families of contours �� � �constant,

corresponding to the above values of #, and the heavy solid lines indicate the assumed initial configuration of the
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field-aligned current sheets.

In general, the present approximation for the shape of the model Birkeland current sheet is similar to that

adopted in the T96 model for the Region 1 current system (note that Eq.15 is equivalent to Eq.2 of Tsyganenko

and Stern [1996]). A difference is that here we introduce the day-night asymmetry by using a deformation of

an initially axisymmetric field, while in T96 that asymmetry was present in the model from the outset, since the

colatitude "� was assumed to vary with the longitude �. The choice of flow-line geometry rests in part on guesses

and approximations, such as the assumption that they all lie in meridional planes, discussed below. However,

observations currently available do not allow more details to be included.

Having defined the shape of the sheet, one can uniquely specify the electric current at any location by

defining its longitudinal profile at ionospheric altitude and by making an additional assumption that its azimuthal

component is zero at all distances, which means that individual current flow lines are contained within meridian

planes and extend all the way to infinity (in the initial unshielded model). This assumption implies that on the

nightside the Region 1 currents map into the distant tail, flowing in the vicinity of the plasma sheet boundary

layer, while on the dayside and in the dawn/dusk sectors they extend to the magnetopause. As in the case of the

cross-tail current, adding the shielding field and nullifying the total field outside the magnetosphere results in

a redirection of the initially unbounded Birkeland currents, so that they become closed via the magnetopause

[Tsyganenko and Stern, 1996, section 2.1]. More details on that question are given in section 2.4.2.3. The

model Region 2 currents differ from those of Region 1 in that they map to lower latitudes in the magnetosphere

and smoothly blend there with the ring and magnetotail currents, in line with the concept of their origin due to

the nightside plasma convection. It should be noted that the Region 2 Birkeland currents and the field-aligned

currents associated with the PRC are driven by essentially the same physical mechanism, that is by the sunward

plasma convection on the nightside. However, for the sake of mathematical tractability we introduced them here

separately, so that the PRC represents the innermost part of the system, while the model Region 2 currents flow

from and to the near-tail plasma sheet.

At the ionospheric altitude, the strength of the current for !th individual mode varies with longitude as

���!�. The principal mode (! � �) corresponds to a downward (upward) Region 1 (Region 2) current in the
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dawn sector and an upward (downward) current in the dusk sector, respectively. The second harmonic (! � �)

provides currents of opposite polarities within both dawn and dusk sectors, allowing one to take into account

a possible noon-midnight asymmetry of the Birkeland currents. The magnitude of the currents was normalized

in such a way that, in each hemisphere, the net current per one half-wave of each sinusoidal mode (i.e., between

� � � and � � ���Æ for ! � �, and between � � � and � � ��Æ for ! � �) equals ��� A.

Having thus defined the electric current distributions for individual modes, we use the Biot-Savart integral

to calculate the components of the magnetic field. The integration was performed by dividing the circular zone of

field-aligned currents at  � ��� into 200 ���Æ intervals of longitude. To take into account a finite latitudinal

thickness of the current sheet (assumed equal to ��
Æ for Region 1 and 
��Æ for Region 2), each of the longitudinal

intervals was divided into 11 intervals of latitude. Integration was conducted along each of the elementary current

flow line tubes, extending from Earth’s center to a distance of  � �����, i.e. well beyond the modeling region,

so that the effect of the remote closure currents could be neglected.

At low altitudes, the field-aligned currents actually close via the ionosphere, rather than through Earth’s

center. However, as concerns the model magnetic field inaccuracy, the difference between the geocentric and

ionospheric closure becomes perceptible only at the Earth’s surface and within a few hundred kilometers above

it, and has no significant effect on magnetospheric field line mapping. A more quantitative analysis of that aspect

is given in section 2.3.4 below.

Owing to the property of axially symmetric current sheets, mentioned in the beginning of this section, the

magnetic field distribution had to be numerically calculated in only one meridional plane, at a grid of points

covering the range of distances between  � ��� and  � ����. Since the field vectors were to be used

to derive an analytical approximation in the entire 3-dimensional space, it was necessary to ensure that all

components of B have comparable magnitudes; for that reason, the longitude of the calculation plane was chosen

at � � �
Æ for the mode with ! � �, and at � � ���
Æ for ! � �. To avoid singularity of the integrand, the

interior of the current sheet was excluded from the Biot-Savart calculations. In doing so, we tacitly assumed

that the approximation procedure (next section) would provide a sufficiently accurate smooth interpolation of

the field components inside the current sheet. Testing of the analytical model (section 2.3.3 and Plates 1 and 2
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below) confirmed the expected results.

In this modeling effort, only two harmonic terms with !=1 and !=2 were used in each of the two Birkeland

current systems (Region 1 and 2). As shown in Paper 2, this is sufficient for extracting from the data the most

essential information on the asymmetry between the day and night parts of the field-aligned current zones.

2.3.2. Approximating the numerically computed field. To approximate the results of the numerical

calculation by a continuous and divergence-free analytical field, we turned to ”conical” harmonics, first

introduced in our early effort to build a field model for field-aligned currents [Tsyganenko, 1991]. In that work,

the magnetic field was represented in spherical coordinates as the curl of a vector potential having only a radial

component ��, approximated by a sum of longitudinal Fourier modes:
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where the piecewise-continuous functions $ ��� read as follows:
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Equations (16)–(17) describe a magnetic field of purely radial currents flowing within a conical current sheet

with a finite thickness ��", whose inner and outer boundaries are specified by the colatitudes " � � "� ��" and

"� � "� ��", respectively, as illustrated in Figure 3. The mode number ! defines the longitudinal structure of

the currents in exactly the same way as in the above numerical model, so that ! � � yields the principal mode

with downward current on the dawn side and upward one on the dusk side (or vice versa), peaking at � � 
%��.
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Although the model (16)–(17) replicates fairly well the effects of Birkeland currents just above the

ionosphere, it yields grossly inaccurate results at larger distances, because the geometry of the conical current

sheet is very different from the actual one, in which the currents flow into and out of the ionosphere along dipolar

field lines. In quantitative terms, the magnetic field in the conical model falls off with the radial distance as

� �  �	, whereas a more realistic model with a dipolar shape of the electric current flow lines yields � �  ��



[Tsyganenko, 1990]. Incidentally, this is one of the reasons why the conical model cannot be directly used for

evaluating the contribution of Birkeland currents in the distant magnetosphere, as was done in a recent work by

Alexeev et al. [2000]. Our earlier work [Tsyganenko, 1991] attempted to take into account the actual geometry

of the Birkeland currents by warping the original conical surface; however, that warping left intact the magnetic

field outside the current sheet and hence could not remedy the problem.

An effective solution, overlooked in the above-mentioned efforts, is to modify the conical field (16)–(17) by

applying to it a suitable deformation. As illustrated in Figure 3, it is intuitively clear that the needed deformation

should provide a partial ”eversion” of space, e.g., by stretching the coordinate " in the northern hemisphere,

accompanied by its contraction in the southern hemisphere. Unfortunately, there is no straightforward method

to directly determine the necessary deformation, and the deformed magnetic field can be quite sensitive to the

details of the coordinate transformation. For that reason, our approach here was to define a flexible analytical

deformation of spherical coordinates with many free parameters and then fit their values by least squares, to

minimize the rms difference between the deformed conical field and the one obtained by the Biot-Savart integral.

The method proved an effective tool, and the rest of this section is devoted to details of the calculation.

The desired deformation of the spherical coordinates  and " was sought as a sum of terms, satisfying

appropriate symmetry requirements and with different dependence on the original coordinates. Having tested

many trial versions, we chose the following coordinate transformation:
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The approximation (16)–(19) yielded a sufficiently accurate fit of the Fourier modes with !=1 and !=2 for

both the Region 1 and 2 fields, providing four sets of the parameters in (18) and (19). Their values are given

in Table 2, which also displays the values of the overall magnitude coefficient ��, initial cone apex angle "�

(Fig.3), rms magnitudes of the model field ��� and its rms deviations ���� with respect to the Biot-Savart field.

By construction, the above described model provided the global field, produced only by the northern part of

the entire Birkeland current system. The contribution from the southern currents (symmetric to the northern ones

for � � �) can be readily represented by rotating the northern (N) part by ��� Æ around the X-axis and changing

the polarity of the current, so that the total field

������� �� � �
���
� ����� ����

���
� ���������

������� �� � �
���
� ����� �� ��

���
� ���������

�	����� �� � �
���
	 ����� �� ��

���
	 ���������

����

As pointed out earlier [Stern, 1994; Tsyganenko, 1998], the deformation method should be used with caution,

since it does not conserve the electric current density. In the above procedure, the effect of the unphysical currents

due to the deformation of the original conical current sheet was minimized, owing to the fact that the deformed

field was accurately fitted to the numerically computed Biot-Savart field (which is strictly curl-free outside of the

current sheet).

2.3.3. Modeling the noon-midnight asymmetry, dipole tilt effects, and spatial scaling. As was

established by the first statistical studies of the Birkeland currents [Iijima and Potemra, 1976, 1978], the centers

of the Regions 1 and 2 are shifted to the nightside, reflecting the basic day-night asymmetry of the entire

magnetosphere, in which the nightside field lines from the auroral oval go to the tail plasma sheet, while its

dayside part maps to high latitudes and is associated with the polar cusps. Another effect to be replicated by

a model is a tilt-related deformation of the entire current system, including a seasonal/diurnal motion of the zones
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of field-aligned currents at low-altitudes, resulting in their equatorward shift in winter and a poleward shift in

summer. Finally, the model should include additional freedom to reproduce the large-scale spatial redistribution

of the Birkeland currents in response to changing interplanetary conditions.

A simple way to include the day-night asymmetry and the tilt-related effects is to apply another deformation

to the magnetic field, by modifying the azimuthal angle � in a cylindrical coordinate system, co-axial with the

�
�� axis. An important requirement here is that the deformations should be relatively small and sufficiently

smooth, to keep the field outside the warped current sheets approximately curl-free.

Mathematically, the procedure is similar to the tilt-related deformation of the tail field, described in

section 2.2.2, so that the transformation equations have the same form as (8)–(10), but with some differences.

First, the rotation now occurs around the Y-axis, rather than around X, so we redefine � �
�
�
 � �
 and

� � ���������
����
���. Second, the function � representing the deformation in � is somewhat different

from the one in (7), because of the following considerations. It is intuitively clear that the desired effect can be

achieved by stretching the coordinate � on the dayside and shrinking it on the nightside. To make the pattern

near Earth shift with the tilt of the dipole, we add a separate term, providing a nearly complete ”dragging” of

the deformed coordinate � at low altitudes, with a gradual decrease of that effect at larger distances. A simple

stretch transformation

� � ��
�
��� 


�
 � �

�
 � �
�

�
����� ���

� �

�
 � �

��

��� �
�

����

yields the needed result. Here the second term in the righthand side provides the required shift of the field-aligned

current oval to the nightside, and the third one yields the tilt-related effect. The parameter �� controls the degree

of the nightside shift at low altitudes, while 
 and �� define the amplitude of the deformation at large distances

and the rate of its increase with the distance � from the Y-axis. In the first trial version of the model, we assumed

�� � ���

 and �� � ����� for the Region 1 and 2 currents, respectively, so that at the ionospheric altitude

they shift by � ���Æ and � ���Æ to the nightside. Two other parameters in the second term of (21) were set at


 � ��
, and �� � �����, so that in the distant magnetosphere the Region 1 currents map to an average location

of the polar cusp on the dayside and to the plasmasheet boundary layer on the nightside.
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The tilt-related parameter � defines a ”slippage” between Earth and the Birkeland current oval; the assumed

value � � ��� yields a shift of � ��
Æ for the maximal value of the dipole tilt � � �
Æ, which roughly

corresponds to observations [Newell and Meng, 1989] and to empirical modeling [Tsyganenko, 1990]. The

parameter �� is a ”hinging distance”, defining the radial extent of the inner region dominated by the ”dragging”

effect of the dipole tilt. It is similar to an analogous quantity in Equation (12) of section 2.2.2, describing the

tilt-induced deformations of the magnetopause and of the tail current sheet. Here its value was set equal to

����. The parameter ( defines the radial distribution of the tilt-related deformation; as shown in T98 (section

3), it is reasonable to assume ( � �.

Accordingly, � �� � ���� , ��� � � ���� , and the cylindrical components of the ”starred” field

�������� �� ��� are

��
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The components of deformed field then read
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and, finally, in the original Cartesian system

��
� � ��
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� ����

��
	 � ���


 �������
� ����

����

The above equations are in general similar to (8)–(10), except for the difference due to the different orientation

of the axes.

As concerns the solar wind and IMF effects on the spatial configuration of the field-aligned currents,

a fundamental mode of response to a growing disturbance level is an overall equatorward expansion of the auroral

and Birkeland current ovals, accompanied by a deeper penetration of magnetospheric plasma into the inner

magnetosphere. This prompted us to introduce a simple spatial scaling of the field from the Birkeland currents
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with the scaling factor a free model parameter. The procedure is similar to the one used for the ring current

(section 2.1); however, that case did not include any renormalization factor, so that the field at Earth’s surface,

produced by the ring current did not depend on its size. In contrast, here we chose the total Birkeland current

flowing into the ionosphere (and flowing out of it) as an independent model parameter. One can easily verify

that, in order for that current to be independent of the spatial scaling factor �, the following renormalization of

the scaled field is needed:

��
������ � ��������� ��
�

Plate 1 illustrates the geometry of the model Birkeland currents, in particular, their noon-midnight

asymmetry, as a color-coded plot of the electric current density, calculated as the curl of the model field near the

noon-midnight meridian plane. Since the field-aligned currents in this model, by construction, are anti-symmetric

with respect to the plane Y=0 (and hence the current density vanishes in that plane), the plots were actually

generated in the plane � � ��Æ�� � ���Æ, slightly rotated off the noon-midnight meridian.

Plate 2 shows polar plots of the field-aligned current density at the ionospheric altitude, corresponding to

two Fourier modes (!=1 and !=2) of the model Region 1 and 2 systems. In this particular case, the Region 1

currents map to the latitudes ��Æ and ��Æ on the day and night sides, respectively, while for the Region 2 currents

the corresponding latitudes are equal to ��Æ and �
Æ. By varying the scaling parameters, the current systems can

be shifted to lower or higher latitudes, both in the ionosphere and at larger distances. As described in section

2.4.2.3, an appropriate modification has also been made to the corresponding shielding fields, so that the total

field remains confined within the magnetopause in a sufficiently wide range of values of the scaling parameters.

In the present model, the Birkeland currents, by construction, are symmetric with respect to the noon-

midnight plane. This restriction does not allow us to take into account the observed longitudinal rotation of the

Region 1 current pattern during periods with strong IMF � �� [e.g., Erlandson et al., 1988; Zhou et al., 2000].

Such a rotation can in principle be modeled by introducing in the expansion (16) Fourier modes with ���!� and

adding appropriate terms in the shielding field. Another possible effect is a seasonal variation of the strength of

the Region 1 current due to changes in the ionospheric conductivity, which can easily be taken into account by

introducing a modulation of the terms in the right-hand side of (20) by the dipole tilt angle. Finally, one cannot
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rule out a possible interhemispheric current, owing to the �-component of the interplanetary electric field due to

the IMF �� [Leontyev and Lyatsky, 1974]. This effect can also be taken into account by a simple extension of the

vector potential (16), adding a uniform downward or upward current to the undeformed conical current sheet. We

chose not to pursue all these modifications in the present work, and plan to address them in a separate detailed

study.

2.3.4. On the ionospheric closure of the model Birkeland currents. As already mentioned above, the

model Birkeland currents have been assumed to pierce the ionosphere and extend all the way to the Earth’s

center, while they actually should close via ionospheric currents. Since the corresponding differential current

system (i.e., obtained by subtracting the model currents from the actual ones) has a spatial scale size of the order

of 1�� , it is intuitively clear that the associated inaccuracy of the magnetic field should be significant only at

small geocentric distances. To get a more quantitative idea on the relative magnitude of the errors, a similar

Biot-Savart integration was made in a model with an ionospheric closure of the Birkeland current. It was assumed

that the currents close via the polar cap along dawn-dusk circular arcs, connecting the inflowing and outflowing

field-aligned currents in the ionosphere, in the same way as they did in an earlier model [Tsyganenko and Stern,

1996].

Figure 4 compares dawn-dusk profiles of three components of the magnetic field of the Region 1 Birkeland

current for �=1.2�� and �=2.0��, where the total strength of the current was assumed equal to 1 MA. Two

panels in the top correspond to the first mode (i.e., varying with longitude as �sin�), and two panels in the

bottom are for the second mode (�sin ��). Even for �=1.2, there is no major difference between the plots

for the geocentric (solid lines) and ionospheric (dashed lines) closure, and the difference almost disappears at

�=2��. This justifies our choice of the geocentric closure current for the purposes of the modeling of the distant

magnetospheric field. Of course, more accurate approximations are needed for an adequate modeling of the field

at ionospheric altitudes, which is beyond the scope of this work.
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2.4. Model Magnetopause and Representing the Shielding Fields

Following the approach of the T96 model, the model magnetopause was assumed as a given analytical

surface with a variable solar-wind controlled scale size. Mathematically, the boundary was described as in T96: a

prolate hemi-ellipsoid of revolution in front (up to a tailward distance of �35� �), smoothly extended in the far

tail by a cylindrical surface. The difference from T96 is two-fold. First, the average shape of the boundary in

this work was fitted to the most recent empirical magnetopause of Shue et al. [1998], while in the T96 model

we used the average magnetopause of Sibeck et al. [1991]. Second, based on the observed shift of the nightside

magnetopause in the Z-direction in response to the geodipole tilt angle (described in section 2.2.2), we introduced

a tilt-dependent shape of the boundary, using a method described in detail in T98 and briefly reproduced below.

For the untilted dipole (� � �) the shape of the front part of the boundary is given in GSM coordinates as

follows (cf. Eq.(1) of Tsyganenko [1995])

� � )� � &��� *�+�

� � &�*
� � ��	

��� +
�	

 ���� (26)

� � &�*
� � ��	

��� +
�	

 ���� �

where the ellipsoidal coordinates + and � span the intervals � 	 + 	 � and � 	 � 	 �%, and where the three

parameters, )�, *�, and &, are derived by fitting the surface (26) to an average boundary of Shue et al. [1998],

with the solar wind ram pressure ,� � � nPa and IMF �	 � �. The best-fit values of the parameters were found

equal to )� � �����, *� � �����, and & � �
���, and in the entire region sunward from � � �����, the

rms distance between the two model boundaries (along the normal) did not exceed � ���� �. In principle, we

could use the model magnetopause of Shue et al. in its original mathematical form; however, the hemi-ellipsoidal

approximation is simpler and more consistent with our numerical algorithms, and that was the main reason for

retaining the approximation (26) for the model boundary.

The tilt-angle effects on the magnetopause shape were taken into account by using a deformation of the

boundary (11)–(14), consistent with the tilt-related warping of the magnetotail field. Its details have already been

given above in section 2.2.2.
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The main factor defining the size of the magnetopause is the ram pressure of the solar wind, , �. Although

it is known that the magnetopause’s reaction to pressure variations depends to a certain extent on the IMF

orientation, in the present work we followed the approach of the T96 model and assumed a self-similar

compression/expansion of the boundary in response to changes of , �, scaling its linear dimensions by the factor

- � �,���,����, where �,�� is the average pressure. Simple theory suggests . � ���, but here the power index

. was treated in the trial fitting runs as a free parameter, and a slightly smaller value . � ���
� was obtained, as

described in more detail in Paper 2. Here we only note that using a self-similar scaling of the boundary allows

one to easily recalculate the shielding field, applying a similar scaling to the spatial distribution of the field

components. In particular, the dipole shielding field ��� scales as ������ ,�� � -�����-�� �,���.

Another important factor, affecting the shape of the magnetopause, is the IMF orientation. It is known

[e.g., Sibeck et al., 1991; Roelof and Sibeck, 1993; Petrinec and Russell, 1993; Shue et al., 1998] that a negative

IMF �	 results in a larger tailward flaring rate of the magnetopause on the nightside. Replicating that effect in

the magnetic field models is more difficult, since it requires a change of the shape of the boundary (while the

pressure variations affect mainly its size), so that there is no simple recalibration of the shielding fields: a new

shape would require to recalculate anew the shielding fields. For that reason, we did not include the IMF effect

upon the magnetopause shape in this model and have left it for a future study. This is partly justified by noting

that the model was intended primarily to improve the description of the inner magnetospheric field, where the

effect of the magnetopause shape variation is of secondary importance.

Once the magnetopause is explicitly defined, we can derive the shielding field � � for each individual

(”partial”) internal-source field ��, so that the total field ���� � �� ��� remains confined within the boundary

for any strength of that current system. Our general approach, similar to that used in the T96 model, was to

assume the potential shielding field for an internal field source as the gradient of a flexible scalar potential

/��� &	� ���� &� �, whose parameters &	� ���� &� are to be found by minimizing the rms value of the normal

component of the total field, �� � ���� 
 �, over the entire boundary [Schulz and McNab, 1987].

As previously shown [Tsyganenko, 1995, 1996, 1998], a convenient form of the scalar potential for the
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shielding field is an expansion into a sum of cartesian ”box” harmonics, having the form
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The upper and lower factors in braces correspond to two types of symmetry: the terms with ������1� are for

the untilted magnetosphere, while the terms with ������1� represent the perturbation field (their coefficients, to

the lowest order, are proportional to the tilt angle �). In fact, as was discussed in detail in T98, the extended

form of the expansion with tilt-dependent perturbation terms is required only for the geodipole shielding field,

while contributions of external sources, including those of the tail current, were treated in a simpler way, by

deformations. In this approach, we derived the confined tail field only for the case of zero tilt angle, � � �.

The configurations for � �� � were then easily obtained by a global deformation of coordinates, defined by

Eqs. (7)–(14), which kept the field from all magnetospheric sources confined within the same tilt-dependent

boundary. More details are provided in the following sections.

2.4.1. Shielding the dipole field within a tilt-dependent magnetopause.As shown in T98, although

applying the coordinate transformation (11)–(14) to the untilted shielded field of the Earth’s dipole results in

”visually reasonable” tilted configurations, there is a subtle problem, rooted in an intrinsic limitation of the

deformation method. Namely, it leaves intact the mapping of the polar cusps, and hence the null points at the

boundary map to the same latitude in the ionosphere for all dipole tilt angles, which disagrees with observations

and model results. In addition, at close geocentric distances the deformation of an originally curl-free dipole field

gives rise to relatively strong unphysical ”stray” currents and to corresponding artificial contribution to �, owing

to the rapid increase of the dipolar field towards Earth. There is no simple way around that difficulty. However,

because most of these inaccuracies arise from deformation of the dipole field, a compromise solution employed

here was to use the deformation method for the other magnetic field sources, but to use a different method to

shield the tilted dipole field, using a tilt-dependent scalar potential composed of the harmonics (27).

More specifically, we followed the method described in T98 (Appendix), in which the accuracy of the

shielding was improved by rotating the potential fields (27) around the Y-axis by an angle, proportional to the



25

dipole tilt angle �. In this particular realization of the approach, the following forms were used:

� � ���	
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����
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����
	

(28)

where ��� � ���2�� and ��� � ���2�� are the matrices of rotation around the ���� axis. The angles of the

rotation, 2� and 2�, were defined by 2� � .�� and 2� � .��, and the coefficients .� and .� were considered

as free parameters and determined by minimizing the rms �� 

��, together with other free parameters entering in

(28).

The fields ���� and ���� in (28) were defined as

���� � ��/��� , ���� � ��/��� (29)

where
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for 3 � �� �� � and 4 � �� �,
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for 3 � �� �� � and 4 � �, and

/��� � ����sin�� '��sin��� exp
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for 3 � �� �� � and 4 � �� �� �. The potentials (31) were obtained by taking a derivative of (30) with respect to

�� �; combining the potentials (30) and (31) was found necessary in order to avoid the tendency of the parameters

 � to cluster in close pairs, accompanied by an unlimited growth of the corresponding linear coefficients in the

course of the iterative minimization of �� 

��. That problem has already been encountered in the construction of

the T96 model and was discussed in an earlier paper [Tsyganenko, 1995; section 2.3]. The coefficients & ��, 
��,

���, '�� , and the nonlinear parameters 0�,  � , 1�, 5�, 2�, and 2�, were fitted by least-squares to minimize the rms

residual ��

�� over a set of points, distributed over the model magnetopause up to a tailward distance of 70� �.

The set included four subsets, corresponding to four values of the dipole tilt angle in the range � Æ � � � �
Æ
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(negative tilts, resulting in redundant symmetric configurations, were not considered). The best-fit solution

was found to provide an rms residual �� of 0.13 nT. Figure 5 shows a plot of the shielded dipole field line

configuration and the shape of the model magnetopause.

2.4.2. Shielding of other external field sources. The ”box” harmonics (27) were also used to construct

the shielding fields for all other magnetospheric current systems. In most cases, the expansion coefficients

also included a linear dependence on additional parameters, taking into account either the tilt-angle effects or

a variable scale size of a current system, or both. A more detailed description for each source is given below.

2.4.2.1. Shielding of the tail field: The tail shielding field was represented by two separate expansions of

the ”box” harmonics (27), corresponding to the ”long” and ”short” modules of the field of the cross-tail current,

described in section 2.2.1. As already said, that allowed us to independently vary the amplitudes of the two

modules, keeping the total tail field fully shielded within the magnetopause.

As mentioned in section 2.2.2, the tilt-angle effects were taken into account by deforming together the tail

field and its shielding field, which required deriving the shielding fields only for the untilted configuration. This

saves much calculation, since there is no need to include in the expansion the terms (27), containing ������1� (as

was done in the T96 model).

Another novelty here is an additional degree of freedom, namely, a variable shift of the cross-tail current

along the X-axis. In T96 the individual tail modules had fixed positions with respect to Earth, since any shift

along the tail axis would require a re-calculation of the shielding coefficients. In this model, the problem was

circumvented by including the shift �� as a linear parameter of the shielding field into each of the two tail field

modules. More specifically, the expansion terms were chosen in the form

/�� � �&�� � 
����� exp
�
�

�
�
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�
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�

�
cos

�

0�
sin

�

 �
(33)

whose coefficients were determined by a standard least squares fitting routine, but using an extended set of values

of �� on the model magnetopause, including those for different values of �� , distributed within the interval

�� 	 �� 	 ���. Figure 6 shows two families of field lines for the shielded ”long” module of the tail field,

corresponding to �� � � and �� � ��. In both cases the fields are accurately confined within the model

boundary, in spite of the large opposing shifts of the cross-tail current.
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2.4.2.2. Shielding of the ring current: The expansions for the shielding field potentials were derived

separately for the symmetric and partial components of the ring current, in order to allow their parameters to vary

independently in response to changing magnetospheric conditions. Mathematically, both were given the same

form, similar to that for the geodipole (Eq.(28)–(32)), but without the derivative term (31):
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Unlike the dipole shielding, the potentials (34)–(35) are multiplied by � �, where � is the scaling factor

quantifying the size of the ring current (section 2.1), which approximately compensates the overall change of its

dipole moment. In addition, the coefficients also include a linear dependence on �� � � � � (negative/positive

values of �� signify a smaller/larger ring current). Figure 7 illustrates the performance of the potentials (34)–(35)

by showing field lines of a tilted ring current (symmetric part), confined within the magnetopause.

Note that the model partial ring current has one more nonlinear free parameter, in addition to the same set of

coefficients and scaling factors as in the symmetric ring current, namely, its rotation angle Æ with respect to the

midnight meridian plane. In principle, the rotation of an axially asymmetric ring current affects the magnetopause

shielding field and, hence, that parameter should also be taken into account in the expansions (34)–(35). Since

the rotation breaks the original symmetry of the magnetic field in the dawn-dusk direction, proper shielding of

such a field would require adding to the potentials (34)–(35) another group of terms, antisymmetric with respect

to � . That would significantly increase the number of parameters and hence further complicate the model. As

a compromise solution, we chose to ignore the effect of the PRC rotation in the shielding field. As can be seen

from the following, the resulting inaccuracy is relatively small.

The net field of the PRC can be represented by a sum of axially symmetric and quadrupole terms

[Tsyganenko, 1993, 2000]. The axisymmetric term obviously does not contribute to the azimuthal field variation,

which is therefore due solely to the quadrupole part, whose field decreases rapidly (as �  ��) outside the PRC.

As can be verified by calculating the contribution of the quadrupole term at different locations in the near
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magnetosphere (see Figure 14 of Tsyganenko [2000]), a PRC with the total magnitude of 0.7 MA produces an

asymmetry of � �� nT between the opposite local time sectors in the inner magnetosphere, and the disturbance is

almost entirely confined inside the PRC. In spite of the relatively large disturbance near Earth, it falls off to less

than 1 nT at the magnetopause, so that the associated effect in the shielding field does not exceed a fraction of nT.

2.4.2.3. Shielding of the region 1 and 2 Birkeland currents: The Birkeland currents were shielded

using expansions of the same scalar potentials as in (34)–(35), but without the common factor, similar to � �. For

the ring current, that factor represented the first-order effect of its rescaling, related to a change of the magnetic

moment, while the linear terms containing �� provided a second-order correction. That way of gauging the

shielding field was possible owing to a relatively limited size of the ring current. In contrast, for the Birkeland

currents it does not make sense to retain such a factor, since they extend over a larger spatial domain and have

quite different geometry.

As already noted in section 2.3.1, adding the shielding field is important, since it redirects the initially

unbounded currents and makes them flow along the magnetopause, which is not only more correct conceptually,

but also brings the model field closer to the observed one. To visualize the geometry of the model Birkeland

currents, a family of the current flow lines was plotted by calculating � � � � � from the shielded model

magnetic field, with all the sources except for the Region 1 field-aligned current turned off. The result is shown

in Figure 8. Note that the density of the lines was set arbitrarily and does not correspond to the actual current

density; our purpose here was just to illustrate the global configuration of the model currents.

2.5. IMF-Related Interconnection Field

Still in the early days of the space physics it was predicted that the existence of an IMF makes the

magnetosphere open [Dungey, 1961]. The interconnection between the IMF and the geomagnetic field was

introduced in several theoretical models, from a crude case of a uniform field added to a purely dipolar one

[Stern, 1973], to quite sophisticated models [e.g., Toffoletto and Hill, 1989, 1993]. Our earlier work [Tsyganenko,

1996] attempted to derive the average interconnection field � ��� from a large set of the magnetospheric B-field

measurements, combined with simultaneous IMF data. Inside the magnetosphere � ��� was a potential field,
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whose normal component across the magnetopause was controlled by the observed orientation and magnitude

of the IMF in the upstream solar wind. The overall degree of the IMF penetration was quantified by a single

coefficient, whose value was determined by fitting the entire model to data. In general, the magnitude of the

penetrating field is relatively small as compared to the total field of magnetospheric sources; in addition, most

of our data covered low and middle latitudes, while the interconnection effects should peak in the high-latitude

magnetosphere, close to its boundary.

Therefore, resolving the interconnection effect in the data-based model seemed like extracting a weak signal

in the presence of appreciable noise. However, somewhat against expectation, fitting the model to the data

yielded reasonable values of the penetration coefficient, between 0.15 and 0.80, even though that parameter was

among the least accurate ones.

The present model retains the interconnection term, even though it is focused on the inner magnetosphere.

Aside from a few modifications, the initial approach was the same as in the T96 model, although the fitting

results, presented in Paper 2, prompted us a much simpler solution, as detailed below.

By definition, the penetrated interconnection field inside the magnetosphere is curl-free and hence can be

uniquely defined as ���� � ��/���, by specifying its normal component at the model magnetopause and

then by solving a Neumann problem for the scalar potential / ���. The normal component �� was represented

semi-empirically, based on the following arguments. Assuming that the IMF ahead of the bow shock is

known, and having in mind that the magnetic field in the magnetosheath is greatly modified by the bow shock

and by its draping around the boundary, one can envision a priori two extreme cases: (1) a fully ”opaque”

magnetopause with �� � � everywhere, and (2) a ”fully transparent” magnetopause, on which (ignoring for now

the compression and draping) �� � ���� 
 �, at any point with unit normal �. Reality is probably somewhere

between those extremes: the IMF is strongly compressed and deformed downstream from the bow shock, and

the penetrating component �� is smaller than that in the fully transparent approximation, though it is reasonable

to assume it remains proportional to ���� 
 �, and the average orientation of the penetrated field inside the

magnetosphere (in the sense of the clock angle) follows that of the IMF in the upstream solar wind. One can

also expect that the extent of the IMF penetration at some point on the magnetopause depends on its tailward
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distance � ��� from the subsolar point. Furthemore, it can also depend on the point’s distance � �, measured

from the plane containing the �-axis and rotated by the IMF clock angle " from the noon-midnight meridian

plane [Toffoletto and Hill, 1989].

Based on the above arguments, the following approximation was at first adopted for the normal component

at the magnetopause

�� �
�
����
� 
 �	

!
�	 �	


�
� ���

��
� � �


�� �


�
� �


"
(36)

where ����
� is the transverse component of the IMF, observed upstream from the bow shock (effects of the IMF

�� are ignored). The first term inside the square brackets empirically approximates the variation of � � down the

tail and away from the plane � � � �, with the 6-folding distances �� and �� �, and the coefficient �	 quantifies

the magnitude of that term. The coordinate � � corresponds to a system, obtained from the standard GSM one

by its rotation around the Sun-Earth line by the IMF clock angle, so that its � �-axis is aligned with ����
� . The

second term in the brackets, �
, corresponds to a uniform penetrating field. That term was absent in the T96

model, so that the penetrated magnetic field dropped down to zero in the distant tail, which resulted in abnormally

small values of the mapped electric potentials across the polar cap (F. Toffoletto, private communication, 1997).

In actuality, one expects �� to asymptotically tend to a finite nonzero value in the distant tail, since the stationary

merging with the IMF implies ��� � � [Toffoletto and Hill, 1989].

The normal component (36) was used for calculating parameters of an expansion for the magnetic scalar

potential, representing the interconnection field inside the magnetosphere. As before, we used ”box” harmonics,

whose coefficients included a linear dependence on the parameters �� and �� :
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The nonlinear parameters have also been expanded in the same way:
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and the values of &����� , 0���� , and  
���
� were found by least-squares fitting over the entire boundary of the normal

field �/�����#, obtained from (37)–(38), to that given by (36) for a set of values of �� and �� within the
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intervals �� 	 �� 	 �
 and � 	 �� 	 ��. The obtained potential interconnection field (37)–(38) was

included in the total model field, and the parameters �	, �
, �� , and �� were fitted by least squares to the

observed field.

Somewhat surprisingly, the parameters �� and �� were found to steadily increase in the course of

iterations beyond the range of validity of the approximation (37)–(38), causing a steady decrease in the � 	 term

of (36). This suggested a nearly uniform penetration of the IMF inside the magnetosphere, so that eventually,

instead of the complex interconnection field defined by the potential (37), we adopted a very simple one

���� � 7����
� (39)

where the penetration coefficient 7 was assumed to depend on the IMF clock angle ", allowing for a possibility

of different penetration efficiency during southward and northward IMF conditions. More details on the model

parameterization and on results of its fitting to the data will be presented in Paper 2.

3. Summary

A new magnetospheric magnetic field model has been developed, intended to replace the existing data-based

T96 model [Tsyganenko, 1995, 1996]. To that end, advanced representations were introduced for all major

sources of the field in the inner and near magnetosphere. The model ring current, originally derived from charged

particle data, includes both axisymmetric and partial components, making it possible to represent strongly

asymmetric disturbances during storm times. Another new element is a flexible global model of the contributions

of large-scale Region 1 and 2 Birkeland currents, whose spatial extent and local time distribution can be easily

varied and fitted to the spacecraft data. The model includes a revised approximation for the field of the cross-tail

current sheet, comprising two modules with different rates of current density variation along the tail axis,

a movable inner edge, variable thickness, and flexible shape, controlled by the tilt angle of the Earth’s dipole. The

model field of all magnetospheric sources is confined within a magnetopause, based on the recent approximation

of Shue et al. [1998]. The size of the boundary is controlled by the solar wind pressure and its shape varies in

response to changes of the geodipole tilt angle. The model also includes a controlled interconnection with the

IMF, making it possible to model open magnetospheric geometries.
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Figure 1. Variation of the electric current density in the model cross-tail current sheet along the � 
�� axis for

the two modules with different rates of the tailward fall-off: (left) the ”short” near-tail module and (right) the

”long” module.

Figure 2. Contours of constant values of the function �� � "��, for different values of the footpoint colatitude " �.

The two panels correspond to # � � (left) and # � �� (right); the heavy lines on the plots show the shape of the

surfaces, used for approximating the Region 1 and 2 field-aligned current sheets, respectively.

Figure 3. Illustrating the geometry of the model Birkeland currents: (left) a conical current sheet, whose magnetic

field is given by the analytical vector potential (16)–(17) [Tsyganenko, 1991] and (right) a deformed conical sheet,

in which the currents near Earth flow along dipolar magnetic field lines.

Figure 4. Comparing the magnetic field of the model Birkeland currents, closing via the ionosphere (solid lines)

with that in the case of the geocentric closure (dashed lines). Panels in the top (bottom) correspond to the first

(second) longitudinal Fourier modes. Panels on the left (right) display the variation of three components of B

vector in the dawn-dusk meridian plane along the line � � ����� (� � �����).

Figure 5. Shielded dipole fields, obtained using the scalar potentials (34)–(35), for untilted dipole (left) and

a tilted configuration (right) with � � ��Æ.

Figure 6. A family of the magnetic field lines of the ”long” tail field module, including its shielding field, shifted

tailward (left) and earthward (right) by �� � 
���.

Figure 7. Field lines of the model ring current (axisymmetric part), shielded inside the model magnetopause. The

ring current is coaxial with the Earth’s dipole, tilted in this example by � � �� Æ.

Figure 8. A family of the electric current flow lines, calculated as a curl of the magnetic field of the shielded

Region 1 Birkeland current, illustrating their global geometry in the model: (left) front view (from Sun) and (right)

side view (along the Y-axis). Note that, virtually, all of the current closes via the high-latitude magnetopause upon

reaching the boundary.

Plate 1. Distribution of the electric current density in the model Region 1 and 2 Birkeland currents in the merid-

ional plane � � ��Æ/� � ���Æ, demonstrating their radial variation and day-night asymmetry. The currents were

calculated as the curl of the model magnetic field; the color coding is in arbitrary units. Note a dramatic increase

of the current density near Earth owing to the convergence of the magnetic field lines.
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Plate 2.Distribution of the electric current density in the model Region 1 and 2 Birkeland currents at ionospheric

altitudes: (left) Region 1, Fourier mode ! � �, (center) Region 2, ! � �, and (right) Region 2, ! � �. The

color coding on the right is given in nanoAmperes per square meter.
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Table 1. Parameters of the Cross-Tail Current Sheet,

Entering in (2)–(5)

3 �� 
� ��

1 -71.093466 10.901012 0.79540700

2 -1014.3086 12.683939 0.67166018

3 -1272.9394 13.517920 1.17486632

4 -3224.9359 14.867750 2.56524992

5 -44546.862 15.123064 10.0198679
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Table 2. Parameters of the Model Magnetic Field of Region 1 and 2 Birkeland Currents, Entering in (18)–(19)

! � � ! � � ! � � ! � �

Region 1 Region 2

�� .1618068 .7058027 .1278764 .4036015

"� .7113545 .5567714 .8867880 .7247997

&	 -.1797958 -.2845939 -.2320034 -.3302974

&
 2.999643 5.715471 1.805623 2.827731

&� -.9322709 -2.472821 -32.37241 -45.44406

&� -.6811060 -.7738802 -.9931491 -1.611104

&� .2099057 .3478294 .3175086 .4927112

&� -8.358816 -11.37654 -2.492466 -.00325846

&� -14.86034 -38.64769 -16.21600 -49.59015

&� .3838363 .6932928 .2695393 .3796217

&� -16.30946 -212.4017 -6.752691 -233.7884


	 4.537023 4.944205 3.971795 4.312667



 2.685836 3.071270 14.54478 18.05052


� 27.97833 33.05882 41.10158 28.95320


� 6.330871 7.387534 7.912890 11.09948


� 1.876532 2.366769 1.258297 .7471650


� 18.95619 79.22573 9.583548 67.10246

�	 .9651528 .6154290 1.014142 .5667097

�
 .4217195 .5592051 .5104135 .6468520
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Table 2. (continued)

! � � ! � � ! � � ! � �

�� -.0895777 -.1796585 -.1790431 -.1560666

�� -1.823556 -1.654932 -1.756358 -1.460805

�� .7457045 .7309109 .7561987 .7719654

�� -.5785917 -.4926293 -.6775248 -.6658989

�� -1.010201 -1.130266 -.04014016 .251518E-5

�� .0111239 -.00961398 .0144680 .0242602

�� .0957293 .1484586 .1200522 .1195003

�	� -.3599292 -.2215347 -.2203585 -.2625739

'	 8.713701 7.883593 4.508964 4.377173

'
 .9763933 .02768252 .8221624 .2421191

'� 3.834603 2.950281 1.779934 2.503483

'� 2.492118 1.212635 1.102650 1.071587

��� 13.18 14.01 11.43 12.94

���� 0.43 0.37 0.52 0.61
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Figure 7
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Plate 1
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